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Abstract. In this paper we study the effects of temperature and Rh concentration on the magnet-
ization of the Ho(Co1−xRhx)2 pseudobinary. To this end we use a model in which the localized spins
are immersed in an effective subsystem of itinerant electrons. Using functional integral techniques
combined with the molecular-field approximation, we calculate the temperature dependence of the
magnetization for several values of the Rh concentration. The curve obtained for the clean limit
x = 0 shows a first-order phase transition. Above a critical Rh concentration of 10%, the phase
transition changes to second order, in good agreement with experimental data from thermal and
magnetostriction measurements.

1. Introduction

The rare-earth Laves phase intermetallic compounds RB2, where R stands for a rare-earth
element and B for a non-rare-earth element, have been extensively studied in the literature
[1–13]. These intermetallics with a cubic (C15) or hexagonal structure (C14) present a great
variety of magnetic properties and many technological applications. In particular, in the cases
of rare-earth–transition metal intermetallics RT2, where T stands for a transition atom, the total
magnetization is associated with the localized 4f spins of the rare-earth and the nd itinerant
electrons of the transition element. This interesting mixed nature of the magnetization produces
unusual behaviour in the total-magnetization curve of these intermetallics. For instance, it is
well known that the magnetization curves of RCo2 intermetallics (R = Er,Dy,Ho) present a
first-order magnetic phase transition [2–13], which is attributed to the spin fluctuations at the Co
sites. Recently, experimental data have shown that the nature of the magnetic phase transition
in these intermetallics changes from first to second order above a critical impurity concentration
at Co sites [8–10]. In particular, Zochowski et al [8] showed by thermal and magnetostriction
measurements that the magnetic phase transition in the pseudobinary Ho(Co1−xRhx)2 changes
from first to second order above 8% Rh concentration.

In spite of the great development in the understanding of the magnetic properties of these
rare-earth Laves phase intermetallics, the complete description of the magnetization, the nature
of the magnetic phase transition, and other questions concerning the pressure effect and change
of the magnetization direction still remain open. Also, the search for new materials with a
giant magnetocaloric effect [14, 15], associated with a first-order magnetic phase transition,
has recently renewed interest in the study of the rare-earth intermetallic compounds. As many
experimental data become available, it is necessary to find a reasonable theoretical description
of them and sometimes to develop new alternative models.

Motivated by these considerations, we study quantitatively and qualitatively the effects of
temperature and Rh concentration on the magnetization of the pseudobinary Ho(Co1−xRhx)2.
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We use a model in which the 4f localized spins of the rare-earth ions interact via an effective
subsystem of itinerant electrons containing disorder. Here we use functional integral techniques
to treat the Coulomb interaction between itinerant electrons of the transition elements, and
the molecular-field approximation to deal with the indirect exchange interaction between the
localized 4f spin of the Ho ions. The disorder introduced by the substitution of Rh for the Co
atom is treated through the off-diagonal coherent potential approximation (CPA) which takes
into account the changes in the energy hopping involving sites occupied by different atoms.
The magnetization curves obtained with this model show that for the clean limit of HoCo2

(i.e. x = 0), the magnetic phase transition is of first order, and as soon as the Rh concentration
reaches a critical value of 10%, the magnetic phase transition changes to second order as
observed experimentally [8].

2. Formulation

In order to describe the pseudobinary Ho(Co1−xRhx)2 we begin with a model Hamiltonian
in which the localized spins of the rare-earth ions are coupled to an effective subsystem of
itinerant electrons. In the approximation of five identical d subbands, we have

H =
∑
lσ

εI
0σ |lσ 〉〈lσ | +

∑
ljσ

T II′
ljσ |lσ 〉〈jσ | + U I

∑
l

nl↑nl↓ − J̃df

∑
l

J f
l s

d
l . (1)

In this Hamiltonian the energy εI
0σ of itinerant electrons can assume the values εCo

0σ or εRh
0σ

depending on the occupancy of the site by a Co or Rh atom. The term T II′
ljσ (I, I′ stand for Co or

Rh) represents the energy of the electron hopping between two different sites and also depends
on its occupancy. The termU I (I stands for Co or Rh) is the parameter describing the Coulomb
interaction between itinerant electrons, and nl↑ (nl↓) is the electron occupation number with up
(down) spin at Co and Rh sites. Here J̃df = (gi − 1)Jdf , where Jdf is the parameter describing
the exchange interaction between localized 4f spins and itinerant electrons, and gi is the Landé
factor of the rare-earth ions. Finally J f is the total angular momentum of the rare-earth ions
and sd

l is the spin of the itinerant electrons. In this model we neglect the crystal-field effect on
the localized 4f levels of rare-earth ions, since it produces only a small renormalization of the
total magnetization of the compound.

Using a simple mean-field approximation to deal with the last term in Hamiltonian (1), we
can decouple it into two effective Hamiltonians Hd and Hf describing subsystems of itinerant
electrons and localized spins:

Hd =
∑
lσ

εI
0σ |lσ 〉〈lσ | +

∑
ljσ

T II′
ljσ |lσ 〉〈jσ | + U I

∑
l

nl↑nl↓ − J̃df

∑
l

〈
J f
l

〉
sd
l (2)

Hf = −
∑
l 
=j

J f
l

[
1

2

(
J̃df

geµB

)2

χd

]
J f
j (3)

where µB is the Bohr magneton and ge is the Landé factor of itinerant electrons. The effective
Hamiltonian Hf describes a subsystem of localized 4f spins coupled to itinerant electrons
via the electronic magnetic susceptibility χd. The term in the brackets in the Hamiltonian
Hf defines an effective exchange interaction between localized 4f spins. This interaction
establishes a connection between the magnetization associated with localized spins and the
electronic structure of the itinerant electrons. It is easy to see that any change in the magnetic
susceptibility χd modifies the effective interaction and consequently the magnitude of the
magnetization associated with localized spins. From the Hamiltonian Hf , we obtain that the
temperature dependence of the magnetization associated with localized spins is given by

MR = giµB
〈
J f

〉
(4)
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where 〈J f〉 is the average of the total angular momentum of rare-earth ions. Here, for the sake
of numerical simplicity, we use the molecular-field approach to treat the interaction between
localized spins. In this case, given the magnetic susceptibility χd, the average 〈J f〉 is easily
calculated in terms of the Brillouin function.

For the subsystem of itinerant electrons, we use functional integral techniques [16–19] to
deal with the Coulomb interaction between electrons. In this approach, the Hamiltonian Hd

for the subsystem of itinerant electrons turns out to be

H̃d =
∑
lσ

εI
lσ |lσ 〉〈lσ | +

∑
ljσ

T II′
ljσ |lσ 〉〈jσ | (5)

with the effective energies εI
lσ given by

εI
lσ = εI

0σ − U I

2
(iνl + σξl)− 1

2
σ J̃df

〈
J f
l

〉
(6)

where νl and ξl are fluctuating charge and spin fields introduced by the functional integral
method. The Hamiltonian H̃d describes an effective subsystem of itinerant electrons moving in
the presence of fluctuating fields and under the action of the effective magnetic field generated
by the localized 4f spins. In this Hamiltonian there are two kinds of disorder, namely, the
implicit disorder associated with the fluctuating fields and the chemical disorder associated
with the substitution of Rh for Co atoms. We deal with the disorder in this Hamiltonian
by extending the off-diagonal coherent potential approximation (CPA) [20] to this problem.
In this approximation, the energy hopping involving sites occupied by different atoms is
parametrized by

T II′
lj = λI

lT0λ
I′
j (7)

where T0 is a reference energy hopping when the sites l and j are occupied by Co atoms and
the parameters λI

l and λI′
j (I, I′ = Co or Rh) should be taken consistent with the extent of the

d wave functions of Co and Rh atoms. With this approximation we can write the Green’s
function for the effective Hamiltonian H̃d as [20]

g−1(z) = (z− H̃d)
−1 = λI

l

[∑
lσ

ε̃I
lσ |lσ 〉〈lσ | −

∑
ljσ

T0σ |lσ 〉〈jσ |
]
λI′
j (8)

where z = ε + i0 and the new effective energy ε̃I
lσ is given by

ε̃I
lσ (z) = z− εI

lσ

(λI
l )

2
. (9)

In order to deal with the diagonal disorder in equation (8), we follow the standard procedure
of the single-site CPA, by introducing an effective medium with self-energy �σ to restore
the translational invariance of the subsystem of itinerant electrons. In order to determine the
self-energy, we generate a Slater–Koster problem by replacing at a given site ‘0’ one atom of
the effective medium by an atom with energy ε̃I

lσ (I = Co or Rh). Using Dyson’s equation,
the average of the perturbed Green’s function Gljσ for the Slater–Koster problem, in the site
representation, is given by [20]〈〈

Gljσ (z)
〉〉 = 〈〈

gljσ (z)
〉〉

+
〈〈
gl0σ (z)

〉〉
(�σ (z)− ε̃I

lσ (z))
〈〈
G0jσ (z)

〉〉
(10)

where gljσ is the unperturbed Green’s function obtained by replacing in equation (8) the
effective energy ε̃I

lσ by the self-energy �σ . In equation (10), the double average should be
taken over the Rh concentration and over the charge- and spin-fluctuating fields. We are more
interested in the magnetic effects and thus, for the sake of numerical simplicity, we neglect
the fluctuation in the charge field and take only the average over the spin field and the Rh
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concentration. After some work, we obtain the following CPA equation for determining the
self-energy �σ :

(1 − x)

∫
dξ

V Co
σ (ξ, z)

1 − V Co
σ (ξ, z)Fσ (z)

P Co(ξ) + x
∫

dξ
V Rh
σ (ξ, z)

1 − V Rh
σ (ξ, z)Fσ (z)

P Rh(ξ) = 0. (11)

Here the probability function P I(ξ), I = Co or Rh, is given by

P I(ξ) = e−β"I(ξ)
/(∫

dξ e−β"I(ξ)

)
(12)

where β = 1/kT . The free energy " I is given by

" I(ξ) =
{
U Iξ 2

4
+

1

π

∫
dz f (z) Im

∑
σ

ln[1 − V I
σ (ξ, z)Fσ (z)]

}
(13)

with f (z) being the Fermi function. The potentials V I
σ (ξ, z) are given by

V I
σ (ξ, z) = �σ(z)− ε̃I

lσ (ξ, z). (14)

The diagonal Green’s function, Fσ (z), is

Fσ (z) =
∫

dε
ρ0(ε)

�σ (z)− ε
(15)

where ρ0(ε) is a standard model for the d density of states. Once the self-energy�σ(z) is self-
consistently determined, the effects of temperature and Rh concentration on the magnetization
of the subsystem of itinerant electrons is given by

Md = (1 − x)

∫
ξP Co(ξ) dξ + x

∫
ξP Rh(ξ) dξ. (16)

The total magnetization is given by the summation of the contribution of itinerant electrons
(Md) and localized spins (MR).

3. Numerical results

In order to calculate the temperature dependence of the magnetization of the pseudobinary
Ho(Co1−xRhx)2 we have to specify the set of model parameters. For the subsystem of localized
spins, we use the total angular momentum J f = 8; the exchange interaction parameter
Jdf = 0.015 eV, and the gi-factor was extracted from Hund’s rule (gi = 5/4). For the
subsystem of itinerant electrons, we choose the Coulomb interaction parameters to ensure
that the Stoner criterion for magnetism is not fulfilled, so the magnetism associated with the
itinerant electrons is induced by the localized spins. The factors λI (I = Co, Rh) parametrizing
deviations in the energy hopping were properly chosen to be consistent with the ratio between
the extension of the 3d and 4d wave functions of Co and Rh atoms. Here we take λCo = 1.0
and λRh = 1.03. All these parameters are kept fixed during the whole process of achieving
self-consistency. As far as the electronic structure is concerned, we adopt a model d density of
states extracted from an ab initio calculation [21]. The initial d-electron occupation numbers
at the Co and Rh sites were taken from the atomic configurations in the periodic table. In the
particular case of the Ho(Co1−xRhx)2 pseudobinary, the substitution of Rh for Co does not
change the total charge of the system. However, the charge transfer between sites should be
determined self-consistently by the solution of the coupled equations discussed above.

In order to achieve self-consistency, we put an initial value of 〈J f〉 into the equations for
the subsystem of itinerant electrons to calculate the electronic magnetic susceptibility χd and
the magnetization Md. The electronic magnetic susceptibility χd is calculated numerically
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Figure 1. The temperature dependence of the total magnetization of the pseudobinary
Ho(Co1−xRhx)2. The circles represent the clean limit for x = 0 where a first-order magnetic
phase transition takes place. The squares represent the critical concentration where the magnetic
phase transition changes from first to second order. The lines are guides for the eyes.

from the expression Md/h, where h is the effective magnetic field produced by the rare-earth
ions acting on the itinerant-electron subsystem. Using the value of χd, we calculate the new
effective exchange interaction between the localized spins and turn to the equations for the
subsystem of localized spins to obtain another value of 〈J f〉. Then we return to the equations
for the subsystem of itinerant electrons to calculate new values of the magnetic susceptibilityχd

and the magnetization Md. We repeat this process until a self-consistent value of the physical
quantity 〈J f〉 is obtained with the desired numerical precision. The total-magnetization curve
calculated in the limit of a vanishing Rh concentration, represented by the circles of figure 1,
shows a first-order phase transition. That occurs since the localized magnetic moments at
rare-earth sites induce a metamagnetic transition in the subsystem of itinerant electrons. This
metamagnetic transition, which is associated with the position of the Fermi level close to a
sharp peak in the d density of states, produces an abrupt enhancement in the electronic magnetic
susceptibility, giving rise to a significant increase in the effective interaction between localized
spins. As a result, the total magnetization shows a first-order phase transition, as has already
been predicted by Bloch et al [6] and observed experimentally [8].

When we increase the Rh concentration, the total electronic density of states of the itinerant
electrons becomes wider. In our model, this fact is taken into account by the parameters
adopted, λCo and λRh. The broadening of the density of states is such that the Fermi level moves
away from the peak in the d density of states, causing the magnetic susceptibility and thus the
effective interaction between localized spins to decrease. Hence the critical temperature is
reduced with increasing Rh concentration in good agreement with experimental data [8]. In
figure 2 we plot the calculated critical temperature as a function of Rh concentration. In
addition, above a critical Rh concentration, the broadening of the density of states is such that
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Figure 2. Critical temperature as a function of Rh concentration for the pseudobinary
Ho(Co1−xRhx)2. The circles are experimental data collected from reference [8].

the effective exchange interaction between localized spins varies smoothly around the critical
temperature, leading to a usual second-order magnetic phase transition. In our work, we obtain
that the critical Rh concentration for the appearance of the second-order phase transition in
this pseudobinary is around 10%, which is in good agreement with experimental data [8]. The
total-magnetization curve for the critical concentration x = 0.1 where the magnetic phase
transition changes from first to second order is represented by the squares of figure 1.

In conclusion, in this paper we have calculated the effects of temperature and Rh
concentration on the total magnetization of the pseudobinary Ho(Co1−xRhx)2. Despite the
approximations used in the model, the magnetization curves obtained in this work show
that above a critical Rh concentration the magnetic phase transition changes from first to
second order, which is consistent with experimental data from thermal and magnetostriction
measurements [8]. We can straightforwardly extend the present model to study the effect
of external pressure and anisotropy on the magnetic properties of this class of rare-earth
pseudobinaries. However, in order to consider the effects of orbital degeneracy and disorder
at the rare-earth sites on its magnetic properties, a more general and detailed treatment of
the electronic structure should be carried out. In addition, the cases of pseudobinaries such as
Ho(Co1−xSix)2 and Er(Co1−xSix)2 can easily be cast in the language of this paper. Calculations
in these directions are now in progress and will be published elsewhere.
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